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Abstract

The paper describes a novel algebraic framework for specifying

backward translations of view updates. It is based on diagram

operations and can be considered an essential generalization

of dynamic views (known in the literature since the eighties).

A distinctive feature of the framework is that both view and

update mappings are first class citizens and explicitly occur

in the arity shape of the translation operation. We show that

dynamic views augmented with mappings give rise to double

categories, and discuss the benefits of this formalism.

1 Introduction

The view update problem refers to the task of trans-
lating updates to a view to updates on the database.
Such translations are correct if the view of the up-
dated base equals to the updated view. Since the
view abstracts away some information, many (or
none) correct updates on the base may result in the
given view update. Finding a unique backward trans-
lation is a difficult problem, which does not have uni-
versal solutions. Yet for special classes of queries
and updates, reasonable translation procedures en-
suring uniqueness (so called update policies) could be
found. Design of update policies is a delicate busi-
ness that needs a careful inspection of the syntactical
(the base schema and the view definition) and the se-
mantic (conditions on instances) sides of the problem
[4, 12, 14].

To manage complexity, it is reasonable to split the
task into simpler components. A complex view def-
inition V is decomposed into a sequence of simple
blocks ∆iV (so that V becomes a view of a view
of...), and similarly a complex update U is presented
as a sequence of elementary deletions, insertions and
modifications ∆jU . For every pair (∆iV,∆jU) a cor-
rect translator Tij is a priori designed and stored in a
library. Then translation T (U) of the update U over
the view definition V can be composed from elemen-
tary blocks Tij as schematically shown in Fig. 1(a).
This mechanism works if we can guarantee correct-
ness of T (U) as soon as all “tiles” Tij are correct.
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Figure 1: Tiling update translation

In overall, the goal of the paper is to make the
sketch above mathematically precise: to explicate the
underlying algebraic structures and show their ade-
quacy to the problem.

In more detail, the tiling idea separates the view
update problem into two parts. The hard one is to
create the very building blocks (tiles), i.e., to de-
sign update policies and write translators Tij — we
are not dealing with it in this paper. The other
part is to design a composition mechanism for join-
ing elementary translators together (tiling). We
need to specify a common interface for tiles Tij so
that tiling would be implementation-independent and
correctness-preserving. Although easier, this part is
not straightforward and exposes several issues to be
solved.

As mentioned above, update policies are inher-
ently specific and dependent on particular kinds of
schema constraints (dependencies), queries, updates,
and their interaction. The tile interface should cap-
ture peculiarities of individual policies in an abstract
way. On the other hand, the interface should not
be overly abstract and skip essential constructs be-
cause it may corrupt tile composition (tiling must
be “tight”). Note also that the very composition
is two-dimensional, which requires special algebraic
means beyond ordinary composion of functions. We
also aim to formulate tiling mechanism in a syntax-
independent way to make it applicable for models be-
yond relational. Indeed, “viewOf” relationships are
ubiquitous in software engineering and different ver-
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sions of the view update problem appear in differ-
ent contexts beyond the traditional database area,
for example, in bi-directional programming [7, 18],
optimistic replication [8] and model synchronization
[17, 5].

Use of algebra and compositionality is, of course,
a known idea that can be traced back to the first
works on the view update problem. Compositional-
ity of updates is a basic assumption in founding works
on constant complement [1] and dynamic views [10].
Compositionality of views is an evident requirement,
but it has not been explicitly formulated until the re-
cent work on lenses [2]: sequential lens composition
[7] includes a trivial discrete treatment of view com-
position. Unfortunately, algebraic structures used in
these works are too rough for our goals: they model
the view and base datasets as discrete points with
nothing in-between. That is, in terms of Fig. 1(a),
arrows between nodes have no extension: they are
just pairs of nodes and denote “viewOf” and “upda-
teOf” relationships. The reality is richer. If a dataset
B is a view of A, there is a view mapping v : B → A
tracing the origin of B’s elements. Similarly, if a
dataset A′ is an update of A, there is an update map-
ping u : A→ A′ specifying which elements were kept
unchanged and which ones were modified in the up-
date. In section 2 we consider an example justifying
the claim. Thus, arrows in Fig. 1(a) do have exten-
sion and the tile composition mechanism must ensure
their coherence. Figure 1(b) shows that translations
well composable in the discrete framework may be
not composable if mappings are taken into account.

Another key point to be addressed is syntax. To
broaden applicability and avoid peculiarities of a par-
ticular syntactic mechanism, both lenses and dy-
namic views only consider views semantically, i.e., as
functions from one space of datasets to another. We
will say these frameworks are syntax-free. However,
policy design does account for typing: data elements
are typed by schema elements, view traceability links
are typed by view definitions and update links are
typed by update definitions ([4] is a notable example
of how it works). Thus, in an accurate specification
of update translation, syntax must be captured but
in an abstract way. The framework is to be syntax-
independent rather than syntax-free.

To summarize, we aim to specify a mathematical
structure satisfying the following requirements:

(a) Be concrete enough to capture the following con-
structs essential for the view update problem: data,
schemas and typing, view and update definitions,
view and update mappings, and update translation

all working in concert;
(b) Be abstract enough to model these constructs

in a syntax-independent way;
(c) Address compositions of views and of updates,

and their interaction between themselves and with
update translations;

(e) Be algebraic to continue the “product line” of
algebraic models for the view update problem.

Appearance of mappings in the requirement (a)
and especially requirement (c) make use of category
theory practically inevitable. Our main algebraic
vehicle is the notion of double category, which is
nothing but a systematic algebraic treatment of two-
dimensional composition. In the course of the paper
we explain categorical ideas in parallel with their ap-
plication.

Our plan is as follows. In section 2 we consider a
detailed example of relational view update to show
that mappings do matter. We also demonstrate the
deficiency of fixing one predefined update policy, and
argue that a possibility to choose from a range of
polices works better (sections 2.3,2.4). In section 3
we specify a mathematical structure satisfying the
requirements; we try to reduce categorical “abstract
nonsense” to a minimum and focus on ideas rather
than technicalities. ref to lechten-

borger pods pa-

per is lost2 Mappings and view updates

Figure 2 presents an example of relational update
propagation, inspired by the main example of [4].1

Our goal in this section is first to illustrate the main
concepts and constructs of the view update transla-
tion, and then abstract them in semi-formal terms
to prepare and motivate the subsequent syntax-
independent formalization (in section 3). Each sub-
section thus begins with considering a corresponding
fragment of the example, and then proceeds to its
semi-formal abstract arrangement.

Distinction between a mapping (function) and its
instance (a link or tuple) is crucial for this section.
Given a mapping f : X ⇒ Y between sets or struc-
turesX,Y , we write the value of f at argument x ∈ X
as either f(x) or (x)f or x.f choosing notation that
makes formulas easier to read. If y = f(x), the pair
(x, y) is called an (application) instance of f . In in-
stance diagrams like Fig. 2, we show such pairs by
arrows x→y and call them links. Thus, a mapping f
appears as a set of links, and in instance diagrams we
show mappings by ovals encompassing their links. In

1We refer to [4] for science-historical explanations and pos-
sible complaints :).
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the text, we distinguish mappings and links by using
double- and single-line arrows respectively.

2.1 View definition

Consider three tables in the left top corner of Fig. 2.
The database schema SSS consists of two relation
schemes, EDS(Empl,Dept,Sal) and DM(Dept,Mngr),
and its possible state A is presented by the corre-
sponding tables (with an intended typo in the New-
ton’s name). The columns of table EDS are dis-
played in the “reverse order” to reduce clutter later
when we will show mappings between relations. The
names of key columns are underlined. The bullets in
the columns under relation names denote row iden-
tifiers (rids), which will be referred to as EDS.row1,
EDS.row2 etc. counting from the top. The set of
rids of table T is denoted by [[ T ]]

rid
and called the

rid extension of T . The extension of the entire table
(all columns including rid) is denoted by [[ T ]].

Table EDS⊗DM is derived by the following query Q:

EDS⊗DM
def
= (EDS ⊗Dept=Dept DM) �(Empl,Mngr)

where ⊗− denotes the relational join operator
(subindexed by the condition) and �− denotes pro-
jection to the set of attributes in the subindex.
More accurately, the syntactical side of the table
(the attribute and relation names, metadata) is
not derived and is a part of the query definition.
The very data in the table are computed/derived
by query execution, correspondingly, the respec-
tive part of the table is framed with dashed lines
(blue with a color display). Rids are also de-
rived: each one is a pair of rids from the respective
operands, (EDS⊗DM).row1=(EDS.row1,DM.row1)
and (EDS⊗DM).row2=(EDS.row2,DM.row2), which
is also shown by dashed blue projection ar-
rows. In general, the rid extension of a join ta-
ble is a subset of the Cartesian product of the
operands, [[ T1⊗PT2 ]]

rid⊂[[ T1 ]]
rid×[[ T2 ]]

rid
with

the subset selection condition given by predi-
cate P . We thus have two projection mappings
pi : [[ T1⊗T2 ]]

rid ⇒ [[ Ti ]]
rid

, i = 1, 2.

A view to SSS is specified in the right top corner
of the figure. The view schema TTT consists of a sin-
gle relational scheme SM(Scholar,Master), which is
mapped to the base schema SSS by three bent links at
the very top of the figure. These three links form
a mapping vvv : TTT ⇒ Q(SSS), where Q(SSS) denotes the
union of SSS with the query schema SSSQ (in our ex-
ample, Q(SSS) consists of three relation schemes EDS,
DM, EDS⊗DM). We need the union rather than only

SSSQ because in general some of the view schema re-
lations are mapped to basic relations of SSS. Thus, a
view definition is a triple (TTT , Q,vvv) with TTT the view
schema, Q a query against SSS, and vvv a mapping as
above. Importantly, the view mapping must respect
the constraints, e.g., key columns are mapped to key
columns.

Given a view definition, the extension of the view
schema is computed by, first, executing the query
(and getting table EDS⊗DM) and then coping the
result to the view location (the table SM). More accu-
rately, first an isomorphic set of fresh rids is created
and then data in the attribute columns are copied.
We thus have a mapping f : [[ SM ]]⇒ [[ EDS⊗DM ]],
whose rid part is shown in the figure.

2.2 Updates and update propagation

Let B denotes the initial state of the view shown in
the figure. Suppose that the view is updated and
comes to a state B′ (table SM′). Let us first ignore
all arrows in-between the two states and inspect the
states immediately. We see that two old rows were
deleted and two new rows are inserted. Deletions can
be propagated to the database by deleting the respec-
tive rows in either one or both of the base relations
EDS, DM (or by their modifications destroying the
joining condition). Assume, for example, that dele-
tions in a join table are realized by suitable deletions
in the left operand of the term T1⊗T2, (cf.[2]), i.e.,
table EDS in our case. We also assume that inser-
tions into SM are realized by insertions into EDS,
and so we add two new rows to EDS with Nulls in
the Salary column denoting unknown values. The re-
sulting database state A′0 is shown on the right of the
figure under the table SM’.

However, here is another interpretation of the pas-
sage from SM to SM’. Suppose that the row1 was
modified rather than deleted: the typo in the name
Newon was fixed, and Newton’s Master changed from
Euclid to Archimedes. We show this interpretation
by linking the rids: arrow bridr1 linking SM.row1 and
SM’.row1 means that two rows refer to the same real
world object (note the =-label near the link). The ab-
sence of such linking for SM.row2 is syntactically sug-
ared by a quasi-link bridr2 from the row to the “crash-
symbol” ⊗. Similarly, the absence of links going to
SM’.row2 is sugared by a “creation” link from sym-
bol �. Due to rigidity of the relational model, links
for the rids determine the corresponding links for the
values in the attribute columns, which may be imme-
diately tested for equality and we get 6=-links from
Newon to Newton and from Euclid to Archimedes.
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Sal Dept Empl EDS 
50K Math Newon        • 
25K Phys Galileo • 
25K Astr Kepler • 

SM Scholar Master 
     o   Newon   Euclid 
  o Galileo Archimedes 

EDS⊗DM Empl Mngr 

     o Newon Euclid 

 o Galileo Archimedes 

DM Dept Mngr 

        • Math Euclid 
     • Phys Archimedes 
 • Phil Aristotle 

SM′  Scholar   Master 

      • Newton Archimedes 
    • Huygens Archimedes 

Sal Dept Empl EDS′2 

>50K Phys Newton • 
 ∅ Phys Huygens • 
25K Astr Kepler • 

Sal Dept Empl EDS′3 

>50K Phys Newton • 
 ∅ Phys Huygens • 
25K Astr Kepler • 
>25K Astr Galileo  

DM′3 Dept Mngr 

       • Math Euclid 
    • Phys Archimedes 
• Phil Aristotle 

DM′1 Dept Mngr 

       • Math Archimedes 
    • Phys Archimedes 
• Phil Aristotle 

DM′2 Dept Mngr 

       • Math Euclid 
    • Phys Archimedes 
• Phil Aristotle 

Sal Dept Empl  EDS′1 

50K Math Newton        • 
 ∅ ∅ Huygens • 
25K Astr Kepler  • 

Sal Dept Empl EDS′0 

  ∅ Phys Newton • 
  ∅ Phys Huygens • 
25K Astr Kepler • 

DM′0 Dept Mngr 

       • Math Euclid 
    • Phys Archimedes 
• Phil Aristotle 
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Figure 2: Examples of relational view updates: the base schema SSS={EDS,DM} and the view schema
TTT = {SM}
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In this way we obtain an update mapping b : B ⇒ B′

consisting of links bxri, i = 1, 2, x = rid ,Sch,Mst . We
will see in the next subsection that this interpreta-
tion of the update has several translation strategies
that result in states different from A′0.

We can imagine yet another update mapping con-
sisting of the link bridr1 as above, and the link from
SM.row2 to SM′.row2: think of the case when Galileo
was erroneously placed into Physics instead of Huy-
gens. Backward translation of this update would re-
sult in table EDS′ different from EDS′0 by the value
25K rather than ∅ in Salary column. Thus, update
mappings do matter.

Note that in general update mappings cannot be
derived from the states. If we attempt to identify
rows automatically by primary keys, then it would be
impossible to modify the key (e.g., to fix a typo). If,
on the contrary, we attempt to identify rows automat-
ically by internal identifiers (rids), it would not work
too because the user can delete a row but later rec-
ognize that was a mistake and restore the same row
— however, the system would assign this same row
a new identifier. Automatic rid-identification would
not also work when the view is copied to another
computer. Thus, update mappings is an independent
part of update specification.

Update mappings reduce uncertainty in interpret-
ing updates but not entirely. For example, there
is a number of different database changes that
cause the change of Newton’s Master from Euclid
to Archimedes in the view, and a number of differ-
ent changes that cause deletion of the row (Galileo,
Archimedes). We first fix one possible interpretation
(cause 1) to see how the translation works, and later
will address variability (causes 2,3,...).

Suppose that update b : B ⇒ B′ shown in
Fig. 2 is caused by the change of the Math man-
ager from Euclid to Archimedes and by firing
Galileo. The corresponding base update is speci-
fied by mapping a1 : A⇒ A′1, whose components,
aEDS
1 : AEDS ⇒ A′EDS

1 and aDM
1 : ADM ⇒ A′DM

1 , are
shown in the figure (some links are missing to
avoid clutter but we remind that a complete set of
rid-links determines the rest. Note that Huygens’
department is unknown because now Archimedes
manages both Math and Physics). These two com-
ponent are actually a projection of a bigger mapping
Q(a1) : Q(A)⇒ Q(A′1) including also the third
component aEMS⊗DM

1 : EMS⊗DM⇒ EMS′⊗DM′

not shown in the figure.

The entire procedure of view computation and
backward update propagation is specified in Fig. 3

in abstract terms of objects (data structures) and
mappings. Horizontal and vertical arrows denote
mappings related to views and updates respectively.
“Depth” arrows going from the front to the back side
are typing mappings: they provide types (relation
and attribute names) for data elements. The user-
defined elements are shown by black solid lines, the
computed elements are dashed (blue with a color dis-
play); basic nodes are shaded and derived ones are
blank. Computation consists of five consecutive oper-
ations (denoted by double-headed arrows with num-
bers), which input two arrows of a ceratin incidence,
and output other two arrows that extend the input
configuration up to a square. Substituting results of
one operation to another amounts to tiling. This is a
key advantage of the notation: substitution becomes
geometrically evident.

The operations (steps) are as follows.

Step 11. Query execution. A query again schema SSS is
specified by adding to SSS new derived elements to be
computed by the query. Hence, we have an inclusion
mapping iQ : SSS ↪→ Q(SSS). A database state is a typ-
ing mapping τA : A⇒SSS (see the top horizontal left
square in the figure). Given a query definition iQ and
data τA, the query can be executed; adding the ex-
ecution results to the initial dataset can be specified
by inclusion iAQ : A ↪→ Q(A).

Step 12. Coping and relabeling. The results of the
query are copied to the view according to the view
mapping vvv.

Step 21. Update execution. An update request uuu is
submitted to the view and executed producing an
update mapping b (the rightmost face of the paral-
lelepiped).

Step 22. Backward relabeling. The update results are
relabeled according to the augmented schema Q(SSS)
(and may be thought of as “copied” back to virtual
slots storing the query results). We may also consider
this operation as backward projection of B′ along f ,
hence the projection notation �f for the results.

Step 3. Backward propagation. The query schema
extension is backward propagated to the database.
This propagation can be considered as finding solu-
tion A′ to algebraic equation Q(A′) = B′�f . As in
general there are many solutions, to achieve unique-
ness some update policy is needed. This is the most
non-trivial part of the procedure.

Diagram Fig. 2(b) presents an abbreviated version
of diagram (a): we hide the query mechanism inside
the view mappings vvvQ, fQ and operation vExe of view
execution which includes query execution. The idea
is made precise in categorical algebra, and is known
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Figure 3: Updates via mappings and tiles

under the name of Kleisli mappings ([15]). Thus,
we may understand view mappings as Kleisli map-
pings (for some unspecified query langauge) and leave
the Q-part of the machinery implicit (including the
subindex Q).

Apart of variability of update policies, diagram in
Fig. 3(a) gives a sufficiently accurate abstract speci-
fication of the content of Fig. 2 and captures all but
one sort of mappings appearing in the figure. What
is missing is links and mappings relating query re-
sults with basic data — note projection mappings
pEDS, pDM in Fig. 2. These mapping are important
for update translation but are often implicit in the
literature ([4] is a notable exception). Recently, they
have been considered in the literature on data lin-
eage and uncertainty [16]. An accurate formalization
of lineage mappings is a whole story because they
are multi-valued, but for the present paper we note
the following. Let vvv+ : TTT ⇒ SSS denotes the compo-
sition of the view definition mapping as above with
(multi-valued) lineage mapping l : Q(SSS)⇒SSS induced
by query Q; correspondingly, we have view mapping
f+ : B ⇒ A. Now, if vvv′ : TTT ⇒ SSS is a parallel view def-
inition, we have vvv′+=vvv+ and f ′+=f ′ as soon as vvv=vvv′

because our lineage mappings are entirely determined
by queries. That is, if two tiles coincide on a common
sub-edge vvv or f , they have to coincide on the entire
edge including lineage. It allows us to hide lineage
inside of view mappings vvv and f .

2.3 Variability of update policies...

We remind that the view update b : B ⇒ B′ was
translated into the base update a1 : A⇒ A′1 under
assumption that b is caused by the change of the
Math manager from Euclid to Archimedes and by
firing Galileo. However, several other causes are pos-

sible.

For example, Newton may move to Physics depart-
ment while managers are not changed: the resulting
base state is A′2 with the corresponding update map-
ping (not shown in the figure to avoid clutter). We
also assume a policy that any move to another depart-
ment leads to a salary increase, hence the constraint
>50K. Yet another possibility is when Newton moved
to Physics and Archimedes starts to manage Math (it
is not shown in the figure).

All these base updates were computed with the
assumption that row (Galileo, Archimedes) disap-
peared since Galileo quitted the enterprize. Now as-
sume that Galileo moved to Astronomy successfully
performing without a manager. This move together
with Newton’s move to Physics give us the updated
state A′3 together with update mapping a3 : A⇒ A′3
(see the figure). There are other possibilities of base
updates providing the same view update. These pos-
sibilities can be enumerated with a table like the
Translation table in the bottom of Fig. 2. The left-
most column lists four possible view update actions
uuui, i = 1..4. The topmost row lists seven related
database update actions pppj , j = 1..7. Plus symbols
in the cells mark possible backward interpretations
of view updates. In some cases these interpretations
can be composed: consider, for example, the double
move (ppp5&ppp6) mentioned above, or compositions of
department deletion with its employees firing, ppp4&ppp2,
or with employees move to a non-managed depart-
ment ppp4&ppp5. When choosing an update policy, we
may exclude such combined interpretations as non-
minimal, but there is still a multitude of minimal
(non-comparable) interpretations encoded by the ta-
ble.

In Fig. 2, each of the links bXri , i=1, 2,
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x=rid, Sch,Mst constituting the update b : B ⇒ B′

is labeled with a set of possible database update pppi
causing this link to appear. By choosing one of the
labels from the set, we set a unique backward in-
terpretation of the view update, for example, tak-
ing ppp5 for bMst

r1 and ppp2 for bridr2 states that Newton
moved to the department managed by Archimedes
and Galileo quitted. It does not provide a unique
database update (if there are several departments
managed by Archimedes), but essentially narrows the
range of possibilities. This range can be described by
conditional values, for example, we place the value
“a dept. managed by Archimedes” in the column
EDS′2Dept for row Newton. In our case, this value is
uniquely evaluated to Physics and we come to update
a2 : A⇒ A2 (note its label (ppp5, ppp2)). Thus, we have
six possibilities of backward translations (six combi-
nations of labels for the links), three of which are
shown in the figure. In general, the same update
b : B ⇒ B′ may have a number of quite reasonable
and correct backward interpretations a : A⇒ A′.

2.4 ... and changing the focus.

The conclusion above is well-known, and it is what
constitutes the view update problem. Our goal in
the paper is to provide general and unifying math-
ematical foundations for different approaches to the
problem. To this end, we consider the most general
situation when the view user is allowed to label view
updates with possible database updates to inform the
system about the user’s interpretation (or intention)
with the update. To subsume the case of a predefined
update policy, we may introduce a special null label
“no interpretation”, in which case the system trans-
lates the update according to some predefined “null”
policy.2

Thus, a view update request becomes a pair (uuui, pppj)
with uuui the view update definition and pppj its intended
backward interpretation. This settings changes the
focus of the view update problem. The main task is
the design of update definition spaces, USSS and UTTT ,
and enumeration of reasonable correspondences be-
tween them (the Translation Table of our example).
The previous focus becomes a particular branch re-
lated to the “null”-label, that is, to backward trans-
lation of pairs (uuu, ∅)∈USSS×UTTT . The approach out-
lined above seems appealing but its precise mathe-
matical underpinning is not straightforward. Con-

2By endowing the system with inductive learning and other
AI capabilities, we may gradually make the backward trans-
lation more reasonable by using heuristics, or/and modifying
the interface for update request.

sidering view updates as pairs (uuui, pppj) means that the
translation mapping is a binary relation TTT ⊂ UTTT ×USSS
rather than a dynamic view function TTT : UTTT ⇒ USSS
[10]. Moreover, our example shows that the update
spaces are graphs of states and update mappings
rather than plain sets of states. Thus, TTT is a binary
relation between graphs. In addition, we have seen
that the spaces are interconnected by view mappings
f : B ⇒ A. Finally, both update and view mappings
are composable and translation should be compatible
with these compositions in some way. In the next sec-
tion we specify a suitable mathematical framework.

3 Well-defined view systems

We begin with a short primer on graphs and cate-
gories. To ease reading, we will often write “a set
X of widgets” instead of “an abstract set X whose
elements are called widgets”.

3.1 From graphs to double categories

Graphs. A graph G consists of a set of nodes G0

and a set of arrows G1 together with two mappings
∂i : G1 → G0, i = 0, 1. As usual, we write a : N → N ′

if ∂0a = N and ∂1a = N ′. Sometimes we write
a : N → N ′::G to remind that a∈ G1. Two arrows
a, b are called composable if a∂1 = ∂0b. A graph
is called thin if for any pair of nodes (N,N ′) there
is at most one arrow a : N → N ′. A graph mapping
(morphism) f : G→ G′ is a pair (f0, f1) of mappings
(functions) fi : Gi → G′i that preserves the incidence
relations between nodes and arrows (a.f1.∂0=a.∂0.f0,
etc.).

Tiles. Let � denotes a fixed graph shown in
Fig. 4(a) with fixed names for its nodes and arrows.
A tile in a graph G is a graph mapping T : �→ G.
It is convenient to denote it as shown in Fig. 4(b)
(ignore symbol P for a moment), which means that
T (12) = f , T (13) = b, T (34) = f ′, and T (24) = a. In
other words, a tile is a quadruple of arrows (f, b, f ′, a)
subject to incidence relationships shown in diagram
(b) and encoded by diagram (a). If we write a tile as a
quadruple of arrows, we always follow the order used
above (12,13,34,24). Some nodes and some arrows in
a tile may be equal (it’s a tuple, not a set), e.g., it
may happen that T (2)=T (4) = A, in which case both
left nodes in diagram (b) will be A. Nodes A,B.. and
arrows f, b.. are elements of the tile T . They will be
denoted by •T , T •,.. and T , T |,... respectively. If P
is a class of tiles (a predicate that defines the class),
we write T :P for T ∈ P and place this declaration at
the center of the diagram. The name of the tile may
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2 �
12

1

4

24
?
�

34
3

13
?

A �
f

B

T :P

A′

a
?
�
f ′

B′

b
?

A �
f

B

∆↙↙

A′

a
?
�
f ′

B′

b
?

(a) (b) (c)

Figure 4: Tile (a,b) and db-arrow (c) definitions

be left implicit but the predicate is always there.

Categories and functors. A category C is a
graph with

(i) an associative operation of arrow composition de-
noted by ; (semi-colon), that is, any pair of compos-

able arrows A
a- B

b- C is assigned with one

and only one arrow A
c- C denoted by a; b, and

(ii) a unary operation 1 that assigns to every node
N an identity/idle loop 1N : N → N . These loops are
units of the composition: 1∂0a; a = a = a; 1∂1a. Nodes
in a category are called objects, and arrows are mor-
phisms. The graph underlying category C is denoted
by |C|, but we will often omit the bars. Hence, C0

and C1 denote the classes of all objects and all mor-
phisms resp. The former can be also considered as
a category, whose only arrows are identities (called
discrete category).

A functor f : C→ C′ is a graph morphism
f : |C| → |C′| that is compatible with arrow com-
position (a; b).f1=(a.f1); (b.f1) and idle loops
f1(1N )=1N.f0 .

Double graphs, categories, functors. A double
graph D is a four-sorted algebraic structure compris-
ing a class D0 of nodes (also called 0-cells), classes
Dh

1 of horizontal and Dv
1 of vertical arrows (1-cells)

and a class D2 of double arrows (2-cells) subject to
incidence (source and target) conditions shown in di-
agram Fig. 4(c). To wit: if ∆ denotes a double arrow,
then its vertical source is arrow f , the horizontal tar-
get is a etc. These data define a tile ∂∆ called the
boundary of ∆. Below we use abbreviations h-arrow,
v-arrow, db-arrow or db-graph.

A db-graph is called thin if for any tile T there is
at most one db-arrow ∆ such that ∂∆ = T .

A double category is db-graph satisfying the follow-
ing requirements. Nodes and h-arrows form a cate-
gory denoted, again, by Dh

1, and similarly, we have a
category Dv

1 so that (Dh
1)0 = (Dv

1)0 = D0. H-arrows
considered as nodes and db-arrows as arrows form a
category Dv

2, in which db-arrows are composed ver-
tically. similarly, v-arrows as nodes and db-arrows
as arrows form category Dh

2 in which db-arrows are

composed horizontally. Thus, both categories have
the same set of arrows, (Dh

2)1 = (Dv
2)1 = D2, but

compositions are different. Nevertheless we denote
them by the same symbol, semi-colon, because the
context is always clear.

The fact that Dx
2, x=h,v, are categories means

that there are h-idle and v-idle db-arrows, which are
the units of the respective compositions. Horizon-
tal edges of h-idle db-arrows must be idle h-arrows;
same holds for v-idle db-arrows. (These definitions
become quite clear when the diagrams are drawn on
a paper, see [13] or [6]). Finally, horizontal and ver-
tical db-arrow compositions are coordinated between
themselves by an interchange law : for a regular net
of db-arrows like in Fig. 1(a), any order of compo-
sition (first horizontally and then vertically, or the
other way round, or in a mixed way) gives the same
result (see [13] for details).3

A double functor ff : D → E is a quadruple of
functions ff0, ff

v
1, ff

h
1, ff2, sending i-cells in D to re-

spective i-cells in E (i = 0, 1v, 1h, 2), with preserva-
tion of all incidence relationships and such that pairs
(ff0, ff

x
1) : Dx

1 → Ex
1 and (ff x1, ff2) : Dx

2 → Ex
2 (x=v,h)

are ordinary functors.

3.2 Building the definition

We aim to define a mathematical structure satisfy-
ing the list of requirements described in Introduction.
We approach the task with a sequence of steps that
consecutively introduce new “pieces” of structure un-
til the requirements (a,c) are satisfied.

3.2.1 The universe

We take some infinite directed graph UUU to be the
carrier of the mathematical structure we are going to
build. Nodes of UUU are interpreted as objects with
structure of some kind (e.g., graphs with additional
structure). Arrows of UUU are interpreted as mappings
between these objects compatible with their struc-
ture. We will use terms node and object, arrow and
mapping interchangeably.

Some classes of UUU -object may have additional
structure, and some classes of mappings may respect
this additional structure. We will thus have several
sorts of objects and mappings. Some pairs of compos-
able mappings can be indeed composed into a “long”
arrow while others cannot depending on sorting. We
say that UUU is an infinite graph with partially com-
posable arrows.

3Appendix reproduces this material for the reviewers’ con-
venience but is excluded from the paper due to space limita-
tions.
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SSS �
vvv

TTT

vv:uvDef

SSS

ppp
?
�

vvv
TTT

uuu
?

SSS �
vvv

TTT

11vvvv :uvDef

SSS

1vSSS
?
�

vvv
TTT

1vTTT
?

(a) general (b) v-idle

SSS �
1hSSS SSS

11huuu:uvDef

SSS

uuu
?
�

1hSSS
SSS

uuu
?

SSS �
1hSSS SSS

11vhSSS :uvDef

SSS

1vSSS
?
�

1hSSS
SSS

1vSSS
?

(c) h-idle (b+c) vh-idle

Figure 5: Class of uvDef -tiles

3.2.2 Metadata

A: Data, view and update definitions. There
is a subclass dataDef of UUU -objects called data def-
initions or schemas. There are two sorts of arrows
between schemas: update definitions and view defini-
tions (the former are loops). When talking about
metadata, we will shortly say updates and views.
Each schema SSS is assigned with two special loop-
arrows: idle update 1SSS : SSS → SSS (that defines an idle
action doing nothing) and identical view 1SSS : SSS → SSS
(that defines SSS as a view of itself). Updates can be
composed associatively, and the idle update is neutral
w.r.t. composition. It means that schemas and up-
dates form a category, updDef. Similarly, we postu-
late a category of schemas and views viewDef. These
two categories have the same class of nodes but differ-
ent arrows. Together they form a subgraph UUU def of
UUU . We additionally assume that each schema SSS has
a designated set of basic updates USSS so that all SSS-
updates are freely generated by USSS . To ease reading
the diagrams below, we will always draw view arrows
horizontally and updates vertically.

B: Forward update translation. An ordinary
view definition specifies how to transform data. We
consider an extended notion of view, which specifies
also how to transform updates.

We assume defined a class uvDef of tiles of shape
specified in Fig. 5(a). It is interpreted as that update
ppp on the base is translated to update uuu on the view.
Note that two horizontal arrows are equal: transla-
tion does not change the view definition.

Class uvDef satisfies the following conditions.

(o) We assume that any basic view update uuu is cor-
rect and hence there is at least one uvDef -tile having
uuu as its right edge.

SSS1 �
vvv21 SSS2 �

vvv32 SSS3

vv21:uvDef vv32:uvDef

SSS1

uuu1
?
� vvv21 SSS2

uuu2
?
� vvv32 SSS3

uuu3
?

vv′21:uvDef vv′32:uvDef

SSS1

uuu′1
?
�

vvv21
SSS2

uuu′2
?
�

vvv32
SSS3

uuu′3
?

Figure 6: uvDef -tile composition

(a) For any update ppp, there is one and only one
uvDef -tile. Hence, we may consider uvDef as an op-
eration producing arrow uuu from the other elements of
the tile. Condition (o) states that this operation is
surjective.

(b) The class contains special tiles specified in dia-
grams Fig. 5(b,c). That is, an idle update is forward
translated into the corresponding idle update, and
identical views do nothing with updates. It implies
that all tiles consisting of four idle arrows belong to
uvDef (diagram (b+c)).

(c) uvDef -tiles can be composed horizontally and
vertically as shown in Fig. 6. In more detail, we define

outer tiles vv32; vv21
def
= [(vvv32;vvv21),uuu3, (vvv32;vvv21),uuu1]

and vv21; vv′21
def
= [vvv21, (uuu2;uuu′2), vvv21, (uuu1;uuu′1)], and the

condition states they belong to uvDef as soon as the
inner tiles are such.

Below, names of definitions (data, update, view)
are bold italic.

3.2.3 Data vs. metadata

For any schema SSS, there is a class of arrows into SSS
disjoint to UUU def and called typing mappings. A pair
A = (DA, τA) with τA : DA →SSS a typing mapping
is to be thought of as data object DA schematized
by SSS. We also call such pairs datasets over SSS, or
(data) instances of SSS, or (database) states when SSS
is considered a database schema. The class of SSS-
instances is denoted by [[SSS ]]. We will also write A:SSS
for A ∈ SSS.

3.2.4 Execution mechanisms

A1: Update execution. We assume defined some
class uExe of tiles of the shape shown in Fig. 7(a):
the left arrow is an update definition, the horizontal
arrows are typing mappings, and arrow a is to be
thought of as execution of uuu for dataset A=(DA, τA).

Class uExe satisfies the following conditions.
(a) For every arrow ppp : SSS → SSS and data instance

A = (DA, τA) of SSS, there one and only one uExe-tile
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SSS �
τA

DA

:uExe

SSS

ppp
?
�τA

′
DA′

a
?

(a)

SSS �
τA

DA

1A:uExe

SSS

1vSSS
?
� τA

DA

a
?

(b)

SSS �
τA

DA

:uExe

SSS

ppp
?
�τA

′
DA′

a
?

:uExe

SSS

ppp′

?
�τA

′′
DA′′

a′

?

(c)

Figure 7: Update execution

having ppp and τA at its left top corner as shown in
diagram (a). Hence, we may consider uExe as an
operation producing instance A′ and vertical arrow
a from the other elements of the tile. We denote
instance A′ by Appp, arrow a by pppA, and the entire tile
by [ppp]A. Arrows like a are called update mappings

(b) All tiles with idle update definitions Fig. 7(b)
are in uExe. In this way a subclass of idle update
mappings denoted by 1A is defined.

(c) Class uExe is closed under vertical tile com-
position Fig. 7(c), That is, if two inner tiles are from
uExe, composition a; a′ is defined in UUU and the outer
tile is also in uExe. We assume that composition so
defined is associative, and tiles specified by diagram
(b) are units. The latter means that idle update def-
inition produce idle update mappings. Hence, our
assumptions can be summarized by saying that in-
stances as objects and uExe-tiles as arrows between
them form a category. We will denote it by updMap.

A2: View execution. We assume defined some
class vExe of tiles of the shape shown in Fig. 8(a).
The upper horizontal arrow is a view definition, the
vertical arrows are typing mappings—the right one is
computed by executing the view definition for dataset
A=(DA, τA), the bottom arrow is to be thought of as
the view traceability mapping. We denote the en-
tire tile by [vvv]A and write Avvv for B and vvvA for view
mapping f .

Class vExe satisfies several conditions being the
horizontal analogs of conditions for class uExe; Fig. 8
explains the idea. Hence, we have a category of data
objects and view mappings, viewMap, whose arrows
are view execution tiles.

B: Forward update translation. Let vv be a
uvDef -tile in Fig. 5(a). It provides a view definition
and two update definitions, which can be executed
for a given data instance A=(DA, τA). There are two

SSS �
vvv
TTT

:vExe

DA

τA
6

�f DB

τB
6

SSS �
1hSSS SSS

1A:vExe

DA

6

�
f

DA

6
SSS �

vvv
TTT �

www
uuu

:vExe :vExe

DA

τA
6

�f DB

τB
6

�g DC

τC
6

(a) (b) (c)

Figure 8: View execution

concurrent computation path: We can get a pair of
instances B and B′ by executing view vvv for A and
for A′ = Avvv respectively (see see Fig. 9(a)). Alter-
natively, we may execute update uuu for view B = Avvv

and get another instance B′′ Fig. 3(c).

b
a

S

DA

DA′

DB

τA

T

T

v

u
τB

S

p

τB′

DB′

vv :vuDef

f

f′

c: vuExe

(a)

:uE
xe

A:S
f:v

B:T
c :vva:p

(a’)A′:S B′:S

b:u
:uE

xe
f′:v

Figure 9: Forward up-
date translation

We call a tile vv well-
defined if instances B′ and
B′′ are equal. Note that in-
stance equality means both
DB′ = DB′′ and τB” =
τB′′ . In the string-base no-
tation, the law takes the
form
(Sync)vv (Avvv)

uuu
= (Auuu)

ppp

where A ∈ [[ •vv ]], ppp=|vv,
uuu=vv| and vv = vv = vvv.

In this case, we may say
that the view definition tile
vv is executed for instance
A and completes the pair

(vv, A) up to an arrow translation cube shown in
Fig. 9. We denote this cube by [vv]A. Thus, a well-
defined uvDef -tile gives rise to a correct translation
cube.

We assume that every uvDef -tile is well-defined,
and we thus have a class

uvExe = {[vv]A : vv ∈ uvDef and A ∈ [[ •vv ]]}

of forward translation cubes: left face is translated
into the right face.

Definition 1 A well-defined view system V is a
graph UUU with partial composition carrying the struc-
ture specified above: metadata constructs dataDef,
updDef, viewDef and uvDef (consisting of well-
defined tiles), instance mapping assigning to each
schema SSS its set of instances [[SSS ]], and execution
mechanisms uExe, vExe that result in data con-
structs updMap, viewMap and uvExe; the latter
defines an update translation execution mechanism.
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3.3 Update policies

To set our main results about update policies, we
will need the following categorical reformulation of
the main definition.

Proposition 1 A well-defined view system gives rise
to a double functor ττ : Inst→MData between two
thin double categories.

Proof (sketch). We need to define two thin double
categories and a functor between them. A thin dou-
ble category is defined by its vertical and horizon-
tal categories, and a class of tiles. For MData, we
take categories updDef and viewDef as MDatav

1

and MDatah
1 respectively. Double arrows are uvDef -

tiles, and all the necessary special (idle and iden-
tity) tiles are there (see Fig. 5). The associativity
of tile compositions is immediately follows from as-
sociativity of composition in categories updDef and
viewDef, and idle/identity tiles are neutral units be-
cause idle/identity arrows are such.

Definition of Inst is a bit more intricate. 0-cells
are instances, Inst0

def
=
⋃
SSS∈MData0

[[SSS ]]. Vertical

arrows are update execution tiles, Instv1
def
= uExe,

and they form a category by conditions in Sec-
tion 3.2.4(A1). Horizontal arrows are view execution

tiles, Insth1
def
= vExe, and they form a category by

conditions in Section 3.2.4(A2). Double arrows are

synchronous cubical diagrams from uvExe, Inst2
def
=

uvExe. Availability of all necessary idle/identity tiles
(cubes), composition and its properties (associativity
and units) are immediately checked because double
arrows are thin (coincide with their cubical bound-
aries). Hence, we get a thin double category.

Typing double functor ττ is nothing but a projec-
tion that maps tiles constituting Inst-arrows to their
meta-sides, and maps cubes constituting Inst-tiles to
their meta-faces. Compatibility of this mapping with
composition and identities is evident. 2

The following result is crucial but is proved by im-
mediate checking the definitions.

Proposition 2 The double functor
ττ : Inst→MData determined by a well-defined
view system possesses the following inverting
facilities (we write A:SSS to say ττ(A)=SSS):

(a) Update execution mechanism, which as-
signs to any vertical arrow (an update definition)
uuu : SSS → SSS::MDatav

1 and data instance A:SSS, an arrow
[uuu]A : A:SSS → A′:SSS::Instv1;

(b) View execution mechanism, which as-
signs to any horizontal arrow (view definition)

vvv : TTT → SSS::MDatah
1 and instance A:SSS, an arrow

[vvv]A : B:TTT → A:SSS::Insth1;

(c) Translation execution mechanism, which
assigns to any tile (translation definition)
vv=(vvv,uuu,vvv,ppp)∈MData2 and instance A:•vv, a
tile

[vv]A = ([vvv]A, [uuu]Avvv , [vvv]Auuu , [ppp]A) ∈ Inst2.

Moreover, these execution operations are compati-
ble with compositions:

(d) [x1;x2]A=[x1]B ; [x2]A
where x1, x2 are similar cells (either similar arrows
or tiles), semicolon ; is composition (vertical or hori-
zontal), and B = Ax2. In categorical terms, it means
that functors ττ v1 and ττh1 are (split) opfibration and
fibration respectively, and ττ is a double fibration [11].

Corollary 3 Let vvij(i = 1..m, j = 1..n) be a net of
uvDef -tiles like shown in Fig. 1. Let vv =

∑
ij vvij

denotes the entire outer tile produced by composition
of the inner tiles, and A ∈ [[ •vv ]]. Then [vv]A =∑

ij [vvij ]Aij , where Aij is the net of instances com-
puted from A = A11 (Ai+1,j = Ai

vvvi , Ai,j+1 = Aj
uuuj ).

Let V be a well-defined view system,
vvv = vvvm;vvvm−1; ..;vvv1 : TTT → SSS a complex view def-
inition in V, and UTTT is the class of basic update
definitions over TTT . We remind that for any pair
(vvv,uuu)∈viewDef1×updDef1, there is at least one
uvDef -tile having uuu as its right edge.

Definition 2 A backward translation policy for TTT
is a mapping TTT : UTTT ×m→ uvDef with m

def
= {1..m}.

A policy is called well-designed if it ensures tight
tiling (see Fig. 1), i.e., formally, TTTu

i+1| = |TTTu
i for

all i=1, 2, ..,m−1 and TTTu
m| = uuu.

Proposition 4 Let TTT a well-designed update policy
for view vvv : TTT → SSS as above, and uuu = uuu1;uuu2..;uuun,
uuuj∈UTTT a complex update over TTT . Then for any in-
stance A:SSS and its view B = vvvA, the view update
uuuB : B → B′ is uniquely and correctly translated back
to an update a : A→ A′.

Proof. Decompositions vvv = vvvm;vvvm−1; ..;vvv1 and
uuu = uuu1;uuu2..;uuun form a net, and the update policy
“fills” each cell of this net with a translation defini-
tion uvDef -tile TTT j

i . Let vv =
∑

ij TTT
j
i denotes the total

composition of all these tiles, ppp = |vv be its leftmost
edge, and a = pppA : A→ A′ is the corresponding up-
date. We need to prove that translation is correct,
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that is, vvvA′ = B′ or [vv]A.| = uuuB . We compute

[vv]A.| = [
∑

ij TTT
j
i ]A.| by definition of vv

=
∑

ij [TTT j
i ]Aij

.| by the corollary

=
∑

j

(∑
i [TTT j

i ]Aij

)
.| by the interchnage law

=
∑

j

(
[
∑

iTTT
j
i ]Bj

)
.| by the corollary again

=
∑

j uuujBj

by definition of well
designed policy

=
∑

j uuujBj
by Proposition 2(d)

= uuuB by definition of uuu

Importantly, the proof shows that the result of
backward translation does not depend on the way
of composing tiles to obtain the total composition
vv. This provides a space for optimization of update
translations. The Pasting Lemma [13] allows us to
extend the space for non-regular nets of view and
update blocks.
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